

Relying on Dynamically Morphing Blades to Increase the Efficiency of a Cycloidal Rotor

Doudou Huang Louis Gagnon

The 11th EASN International Conference

Innovation in Aviation & Space to the Satisfaction of the European Citizens

01.09.2021

Introduction - Cycloidal Rotor

What is a cycloidal rotor?

- A rotating wing system
- The rotation axis is parallel to the span

The advantages:

- Provide 360° thrust forces
- Maintain constant flow velocities
- Achieve higher aerodynamic efficiency

[1] F. Rodrigues, M. Habibnia, and J. Páscoa, "Novel propulsion system for VTOL aircraft based on cycloidal rotors coupled with wings," 07 2020.

Universität Stuttgart

Introduction - Project Description

- **Theme**: improve the aerodynamic performance of the cycloidal rotor by utilizing dynamically morphing blades in a CFD model.
- **Objective**: achieve improvements in efficiency by tuning morphing control.

[2] L. Gagnon, G. Quaranta, M. Morandini, and P. Masarati, "Cycloidal rotor aerodynamic and aeroelastic analysis," 10 2014.
Universität Stuttgart
01.09.2021
4

Camber Concepts - NACA Airfoils[3]

Symmetric NACA airfoils:

Cambered NACA airfoils:

Half thickness at a certain location x:

•
$$y_t = 5t[0.2969\sqrt{x} - 0.1260x - 0.3516x^2 +$$

Camber line function:

•
$$y_c = \begin{cases} \frac{m}{p^2}(2px - x^2), & 0 \le x \le p, \\ \frac{m}{(1-p)^2}((1-2p) + 2px - x^2), & p \le x \le 1. \end{cases}$$

$$x_U = x - y_t \sin \theta, \quad y_U = y_c + y_t \cos \theta, x_L = x + y_t \sin \theta, \quad y_L = y_c - y_t \cos \theta.$$

[3] NACA airfoil - Wikipedia

Universität Stuttgart

Camber Concepts – Trailing/ Leading Edge Deformation

Leading edge camber morphing:

Camber line function[4]:

•
$$y_c = \begin{cases} 0, & 0 \le x < p, \\ \frac{-m}{(1-p)^3} (x-p)^3, & p \le x \le 1. \end{cases}$$

• p: start position of TE camber

Camber line function:

•
$$y_c = \begin{cases} \frac{m}{p^3}(p-x)^3, & 0 \le x < p, \\ 0, & p \le x \le 1. \end{cases}$$

• p: end position of LE camber

[4] B. K. Woods, J. H. Fincham, and M. I. Friswell, "Aerodynamic modelling of the fish bone active camber morphing concept," in Proceedings of the RAeS Applied Aerodynamics Conference, Bristol, UK, vol. 2224, 2014.

Universität Stuttgart

Case Description

Fig: Definition of coordinate system and parameters

Fig. Mesh topology for the rotor system

Simulation type	2D URANS	Turbulence modelling	$k - \omega - SST$
Baseline Case	NACA0015	Cell Count	123,408
Number of Blades	2	y ⁺ Value	< 8
Chord Length	0.2 <i>m</i>	Reynolds Number	72,000
Blades Span	0.8 m	Courant Number	(1,2)
Rotational Speed	17.453 rad/s	Pitching Axis	50% of the chord

Tab. Parameters of rotor system in simulations

Aerodynamic Properties

Results and Discussion – NACA Camber

Force and Power Analysis

- Thrust and power increase with increasing camber degree.
- Thrust grows faster than the power.

- Power loading will decrease while figure of merit continuously increase.
- Figure of merit reaches the value of 0.61 in case of 16% camber.

Results and Discussion – NACA Camber

Downwash Velocity

- More intensified down-wash velocity with increasing camber degree.
- Reduction in the effective AOA and changes in inflow velocity.

Results and Discussion – NACA Camber

Vorticity Contour

For the case with cambered NACA airfoils:

- The formation of the leading edge vortex at $\psi = 120^{\circ}$ is eliminated.
- The presence of vortex at the outer side is observed near the lower end.

Results and Discussion – Leading Edge Deformation

Force and Power Analysis

• Thrust and required power decrease with increasing camber degree.

- Slight improvements in efficiencies could be achieved when *m*<8%.
- Best performance in efficiency is obtained in case of 4% LE camber.

Results and Discussion – Leading Edge Deformation

Downwash Velocity

- The thrust angle varies from 96.2° to 93.4° and 92.7°.
- No obvious change in velocity magnitude and a clockwise shift of the area affected by downwash velocity could be observed.

Results and Discussion – Leading Edge Deformation Vorticity Contour

For the case with cambered LE:

- The formation and development of LEV at $\psi = 120^{\circ}$ is eliminated.
- No signs of vortex development or severe flow separation could be seen.

Results and Discussion – Trailling Edge Deformation

Force and Power Analysis

- Thrust and required power increase with increasing camber degree.
- Increment in thrust exceeds in power for the case with large camber.

• Efficiency will first increase then decrease as more camber is introduced.

Results and Discussion – Trailling Edge Deformation

Downwash Velocity

- Intensified down-wash velocity with increasing camber degree.
- More concentrated area affected by downwash velocity.

Results and Discussion – Trailling Edge Deformation Vorticity Contour

For the case with cambered TE:

- The size of leading edge vortex at the upper left half is reduced.
- Vortex shedding in the wake region and the blade vortex interaction at the lower end could be observed.

Results Summary

	Resultant Thrust [N]		Thurst Angle [Deg]	Power [W]		Power Loading [N/W]		Figure of Merit [-]	
Baseline case	0.84		96.43	1.65		0.511		0.423	
NACA Camber	-			_				-	
$p = 0.4 \ m = 4\%$	0.99	+17.9%	97.05	1.76	+6.67%	0.565	+10.7%	0.509	+20.3%
$p = 0.4 \ m = 8\%$	1.15	+36.9%	99.01	2.07	+25.4%	0.556	+8.81%	0.539	+27.4%
$p = 0.4 \ m = 10\%$	1.26	+50.0%	100.17	2.26	+40.0%	0.556	+8.81%	0.562	+32.9%
$p = 0.4 \ m = 12\%$	1.35	+60.7%	102.23	2.44	+47.9%	0.554	+8.41%	0.581	+37.3%
$p = 0.4 \ m = 14\%$	1.43	+70.2%	103.79	2.59	+55.2%	0.551	+7.83%	0.594	+40.4%
$p = 0.4 \ m = 16\%$	1.50	+78.5%	105.37	2.72	+64.8%	0.550	+7.63%	0.607	+43.5%

- The highest efficiency is obtained.
- Certain promotion in local flow condition.

Results Summary

	Resultant Thrust [N]		Thurst Angle [Deg]	Power [W]		Power Loading [N/W]		Figure of Merit [-]	
Baseline case	0.84		96.43	1.65		0.511		0.423	
TE Camber				-				_	
$p = 0.7 \ m = 4\%$	1.11	+32.1%	98.42	2.11	+27.9%	0.526	+2.93%	0.501	+18.7%
$p = 0.7 \ m = 8\%$	1.35	+60.7%	100.94	2.62	+58.8%	0.514	+0.05%	0.538	+27.5%
$p = 0.7 \ m = 10\%$	1.48	+76.2%	101.00	2.98	+80.6%	0.495	-3.22%	0.542	+28.4%
$p = 0.7 \ m = 12\%$	1.57	+86.9%	101.60	3.30	+100%	0.477	-6.65%	0.539	+27.7%
$p = 0.7 \ m = 16\%$	1.71	+105%	103.42	3.76	+121%	0.455	-11.0%	0.536	+27.0%
$p = 0.7 \ m = 18\%$	1.82	+116%	104.76	4.21	+155%	0.432	-15.5%	0.526	+24.6%

- Highest value of thrust and required power.
- No obvious contribution in flow field.

Results Summary

	Resultant Thrust [N]		Thurst Angle [Deg]	Power [W]		Power Loading [N/W]		Figure of Merit [-]	
Baseline case	0.843		96.43	1.649		0.511		0.423	
LE Camber									
$p = 0.3 \ m = 2\%$	0.820	-2.73%	94.23	1.489	-9.70%	0.551	+7.83%	0.450	+6.38%
$p = 0.3 \ m = 4\%$	0.805	-4.51%	93.36	1.445	-12.3%	0.557	+9.00%	0.451	+6.62%
$p = 0.3 \ m = 6\%$	0.792	-6.05%	92.75	1.424	-13.6%	0.556	+8.81%	0.447	+5.67%
$p = 0.3 \ m = 8\%$	0.776	-7.95%	92.71	1.409	-14.6%	0.551	+7.83%	0.438	+3.55%
$p = 0.3 \ m = 12\%$	0.733	-13.0%	92.43	1.418	-14.0%	0.517	+1.17%	0.400	-5.43%

- No gain in thrust and slight improvement in efficiency.
- Optimized local flow condition.

Universität Stuttgart

Institute of Aerodynamics and Gas Dynamics

Questions?

Thank you for your attention!

Doudou Huang, Master student: yellowbean1020@gmail.com

The work of Louis Gagnon supported by the Alexander von Humboldt Foundation.

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation